US009111598B2

a2 United States Patent
Jibbe et al.

US 9,111,598 B2
Aug. 18,2015

(10) Patent No.:
(45) Date of Patent:

(54) INCREASED I/O RATE FOR SOLID STATE USPC 365/185.11, 185.29, 189.011, 189.04,

STORAGE

365/189.16, 218, 230.03, 231, 185.003,
365/189.14, 230.04

(71) Applicant: NetApp, Inc., Sunnyvale, CA (US) See application file for complete search history.
(72) Inventors: Mahmoud K. Jibbe, Wichita, KS (US); (56) References Cited
Gary M. Gaston, Wichita, KS (US)
) U.S. PATENT DOCUMENTS
(73) Assignee: NetApp, Inc., Sunnyvale, CA (US)
2012/0233384 Al* 9/2012 Charlesetal. 711/103
(*) Notice: Subject to any disclaimer, the term of this 2013/0051144 Al* 2/2013 Suzuki 365/185.11
P s et o e 33 BEGA AT J0 BE e
gietal. . .
US.C. 154(b) by 66 days. 2015/0003157 Al* 1/2015 Aritome 365/185.11
(1) Appl. No.: 14/028,142 FOREIGN PATENT DOCUMENTS
(22) Filed: Sep- 16,2013 KR 1020130075221 * 6/2013
(65) Prior Publication Data * cited by examiner
US 2015/0078111 Al Mar. 19, 2015 Primary Examiner — Fernando Hidalgo
(51) Int.CL (74) Attorney, Agent, or Firm — Gilliam IP PLLC
G11C 7/00 (2006.01)
G1IC 7710 (2006.01) (57 ABSTRACT
G1IC 16/34 (2006.01) The storage device receives a write request from a disk con-
GO6I 11/10 (2006.01) troller to write data to a storage array. The storage device
G11C 13/00 (2006.01) determines that one or more blocks are marked for deletion.
GO6F 12/02 (2006.01) In response to receiving the write request and determining
(52) US.CL that blocks are marked for deletion, the storage device issues
CPC ... G11C 7/1006 (2013.01); GO6F 11/1068 a write command on a first media access channel for a first
(2013.01); GO6F 12/0246 (2013.01); G11C location of the storage array, and issues an erase command on
13/0069 (2013.01); G11C 13/0097 (2013.01); a second media access channel for a different storage location
G1IC 16/3445 (2013.01) of the storage array. Thus, the commands are issued concur-
(58) Field of Classification Search rently on different channels.

CPC GOGF 12/0246; GOGF 11/1068; G11C
13/0069; G11C 13/0097; G11C 16/3445

18 Claims, 8 Drawing Sheets

ACCESS STORAGE DEVICE 300

| USER SAVES DATA TO FILE WITHIIN APPLICATION

ON USER DEVICE 302
USER APPLICATION TRANSFERS DATA TO
FILESYSTEM 304
n)
FILESYSTEM TRANSFERS DATA TO OPERATING
STORAGE DEVICE 240 SYSTEM 208
NTROLLER
STORAGE SERVER e zeg OPERATING SYSTEM TRANSFERS DATA TO HOST
20 BUS ADAPTER (HBA) 308
05230 WRITE BUFFER)
USER DEVICE 24 HBA DRIVER PLACES DATA IN /O PACKETS FOR
210 FILESYSTEM HBA TRANSMISSION TO DEVICE CONTROLLER 310
p:73 & ‘
AP CHO sew| CHN)
a2 DEVICE CONTROLLER BREAKS DATA INTO BLOCKS
FOR STORAGE ON STORAGE DEVICE(S) 312
DEVICE CONTROLLER T
24
DEVICE CONTROLLER PREPARES DATA BLOCKS
FOR RAID PROTOCOL AS APPROPRIATE 314
STORAGE ARRAY 248 +
» DEVICE CONTROLLER SENDS DATA BLOCKS TO

STORAGE DEVICE(S) 316

1

STCRAGE DEVICE(S) INTERNALLY PERFORM
CONCURRENT WRITE AND ERASE 318

U.S. Patent

Aug. 18, 2015 Sheet 1 of 8

CLIENT
110

NETWORK
120

(]

STORAGE SERVER
130

DEVICE
142

FIG. 1

US 9,111,598 B2

US 9,111,598 B2

Sheet 2 of 8

Aug. 18, 2015

U.S. Patent

e
ddv

0z
30IA3Q ¥3SN

72 AVENY JOVHOLS
(744
¥ITIOHINOD 30IAIA
(L-NHD | oo OHD
F#4 H{%4
VaH W3LSASTI4
e
¥344Ng TLINM 72 SO
474 mm_>mmmo mwéo%
¥3TI0HLNOD
072 30IA30 OVHOLS

o~

U.S. Patent Aug. 18, 2015 Sheet 3 of 8 US 9,111,598 B2

ACCESS STORAGE DEVICE 300

USER SAVES DATA TO FILE WITHIIN APPLICATION
ON USER DEVICE 302

v

USER APPLICATION TRANSFERS DATA TO
FILESYSTEM 304

v

FILESYSTEM TRANSFERS DATA TO OPERATING
SYSTEM 306

v

OPERATING SYSTEM TRANSFERS DATA TO HOST
BUS ADAPTER (HBA) 308

v

HBA DRIVER PLACES DATA IN I/0 PACKETS FOR
TRANSMISSION TO DEVICE CONTROLLER 310

v

DEVICE CONTROLLER BREAKS DATA INTO BLOCKS
FOR STORAGE ON STORAGE DEVICE(S) 312

v

DEVICE CONTROLLER PREPARES DATA BLOCKS
FOR RAID PROTOCOL AS APPROPRIATE 314

v

DEVICE CONTROLLER SENDS DATA BLOCKS TO
STORAGE DEVICE(S) 316

v

STORAGE DEVICE(S) INTERNALLY PERFORM
CONCURRENT WRITE AND ERASE 318

v

FIG. 3

U.S. Patent

Aug. 18, 2015

Sheet 4 of 8

CONCURRENT WRITE COMMAND
ON FIRST CHANNEL 402

WRITE DATA TO DATA BUFFER OF STORAGE
DEVICE 412

v

DETERMINE IF ADEQUATE FREE SPACE ON
STORAGE DEVICE FOR WRITE 414

YES

ADEQUATE FREE SPACE?
41§

1

PERFORM TRADITIONAL WRITE 418

DETERMINE IF WRITE REQUEST IS EDIT OF
EXISTING DATA 420

——

GET ADDRESSES OF AVAILABLE BLOCKS 424

v

WRITE DATA TO MEDIA 426

v

COMMAND COMPLETE RETURNED TO DISK
CONTROLLER 428

FIG. 4A

READ EXISTING DATA 430

v

MODIFY EXISTING DATA WITH NEW DATA 432

Y

WRITE MODIFIED DATA TO NEW PAGE(S) 434

v

MARK OLD PAGE(S) FOR DELETION 436

US 9,111,598 B2

U.S. Patent Aug. 18, 2015 Sheet 5 of 8 US 9,111,598 B2

CONCURRENT ERASE COMMAND
ON SECOND CHANNEL 404

DETERMINE IF THERE ARE FULL BLOCKS MARKED
FOR DELETION 442

BLOCKS
MARKED FOR DELETION?
444

YES

¥

ISSUE ERASE COMMAND TO BLOCK(S) MARKED
FOR DELETION 446

ERASE
COMPLETED SUCCESSFULLY?
448

1

SEND ERROR CONDITION TO DEVICE

YES

l CONTROLLER 450

COMMAND COMPLETE RETURNED TO DEVICE
CONTROLLER 452

'

— END BLOCK DELETION 454

FIG. 4B

U.S. Patent Aug. 18, 2015 Sheet 6 of 8 US 9,111,598 B2

500

530 530 530
CLIENT | l | STORAGESERVER | . ¥ . | STORAGE SERVER | _ l | cuent
502 [T v 510A “ 510B < "l 502

DISK| e « & |DISK DISK| o @ & | DISK
552A 552A 5528 5528
CONTROLLER CONTROLLER
580A 580B
STORAGE 550A STORAGE 5508

NODE 510A /
M-HOST RDB
524A 528A

N-MODULE D-MODULE

CONTROLLER
580A

522A 526A
\\ // \ DISK 5524
CLUSTER CLUSTER
CLIENT SWITCHING SWITCHING
502 FABRIC FABRIC
540 540
£ S CONTROLLER
N-MODULE D-MODULE 5808
5228 5268 —
<l e
DISK | o« o | DISK
M-HOST RDB 5508 550B
5248 5288 — —
NODE 5108 STORAGE 5508

FIG. 5B

U.S. Patent Aug. 18, 2015 Sheet 7 of 8 US 9,111,598 B2
600
MEMORY 610
OPERATING
PROCESSOR SYSTEM USER
602 614 CONSOLE
802 614 612
650
I CLUSTER
NETWORK : ACCESS 1 STORAGE
ADAPTER | ! ADAPTER
620 1 ADAPTER : 640
TO/FROM TO/FROM TO/FROM
NETWORK SWITCHING STORAGE
530 FABRIC 550
540

FIG. 6

U.S. Patent Aug. 18, 2015 Sheet 8 of 8 US 9,111,598 B2
00 CF PROTOCOL
= N-MODULE 710 0 D-MODULE 750
A A
r Y Y
r N
CF INTERFACE KR TN
740A CF INTERFACE
— vy 7408
DAFS SCSI TARGET
18 NFs | cies | wrre [MOPULEZH LESYSTEY
LT vi U I e e 760
126 28 = STORAGE
PROTOCOL
ENGINE . SERVER
TcP |upp TCP 765
125 716|715 716 RAID SYSTEM
i has - FC 780
IP IP =0
14 4
a— DISK DRIVE
SYSTEM
ACCESS MEDIAY%ICESS 0
. 112 _ /
M-HOST CLUSTER SERVICES SYSTEM
01 36
DISK CONTROLLER
704
- ?
(]
1
11
I________________________'s.-a'________________________I
! CONTROLLER i
| 106 l

US 9,111,598 B2

1
INCREASED I/O RATE FOR SOLID STATE
STORAGE

FIELD

Embodiments described are related generally to storage
device access, and embodiments described are more particu-
larly related to a storage device providing concurrent write
and erase commands in response to a write request.

COPYRIGHT NOTICE/PERMISSION

Portions of the disclosure of this patent document can
contain material that is subject to copyright protection. The
copyright owner has no objection to the reproduction by
anyone of the patent document or the patent disclosure as it
appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever. The copyright notice applies to all data as described
below, and in the accompanying drawings hereto, as well as to
any software described below. Copyright © 2013, NetApp,
Inc., All Rights Reserved.

BACKGROUND

The longer a storage device is used, the amount of free,
unwritten space decreases. The decrease of free, unwritten
space is especially true in storage devices used in data centers
or other network-accessed shared storage architectures.
When the storage device is a solid state drive (SSD), the
decrease in free, unwritten space causes the performance of
the device to decrease. The performance decrease is
accounted for because the SSD must erase the space neces-
sary for the new data prior to writing the data. The extra delay
in writing the data reduces throughput performance.

Traditionally, a write to an SSD or other storage device that
requires erasing prior to writing, includes a host system send-
ing data to a disk controller or comparable controller device.
The disk controller separates the data into blocks for storage
on the storage devices, and issues a write command to the
storage device itself. The storage device executes local firm-
ware to determine how to store the data on the physical
medium of the storage device. Traditional firmware includes
the following conditions:

If the data is not edited data, and there are adequate free
pages on the storage device, the local controller writes the
data directly to the media;

If'the data is not edited data, and there are not adequate free
pages on the storage device, the local controller obtains
address(es) of block(s) marked for deletion, and erases the
block(s). Only after the completing the erase function, the
local controller writes the new data to the newly erased pages;

If the data is edited data, and there are adequate free pages
on the storage device, the local controller reads the original
data, modifies the original data with the new data, and writes
the modified data to the free pages on the media. The local
controller then marks the old pages for deletion; and

If the data is edited data, and there are not adequate free
pages on the storage device, the local controller reads the
original data and modifies the original data with the new data.
The local controller obtains address(es) of block(s) marked
for deletion, and erases the block(s). Only after completing
the erase function, the local controller writes the modified
data to the newly erased pages. The local controller then
marks the old pages for deletion.

The delay created by the requirement to erase pages prior to
performing a write when there are not adequate free pages can

10

25

35

40

45

55

65

2

become a significant performance bottleneck in a data storage
subsystem having a heavy access load, such as a data center.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description includes discussion of figures
having illustrations given by way of example of implementa-
tions of embodiments described. The drawings should be
understood by way of example, and not by way of limitation.
Asused herein, references to one or more “embodiments” are
to be understood as describing a particular feature, structure,
or characteristic included in at least one implementation.
Thus, phrases such as “in one embodiment™ or “in an alternate
embodiment” appearing herein describe various embodi-
ments and implementations, and do not necessarily all refer to
the same embodiment. However, they are also not necessarily
mutually exclusive.

FIG. 1is a block diagram of an embodiment of a system in
which a drive issues concurrent write and erase commands in
response to a write request.

FIG. 2 is a block diagram of another embodiment of a
system in which a drive issues concurrent write and erase
commands in response to a write request.

FIG. 3 is a flow diagram of an embodiment of a process for
accessing a storage device that implements concurrent write
and erase operations.

FIG. 4A is a flow diagram of an embodiment of a process
for implementing a write on channel A concurrently with an
erase on channel B as provided in FIG. 4B.

FIG. 4B is a flow diagram of an embodiment of a process
for implementing an erase on channel B concurrently with a
write on channel A as provided in FIG. 4A.

FIG. 5A illustrates a network storage system in which
concurrent write and erase can be implemented.

FIG. 5B illustrates a distributed or clustered architecture
for a network storage system in which concurrent write and
erase can be implemented in an alternative embodiment.

FIG. 6 is a block diagram of an illustrative embodiment of
an environment of FIGS. 5A and 5B in which concurrent
write and erase can be implemented.

FIG. 7 illustrates an embodiment of the storage operating
system of FIG. 6 for which a concurrent write and erase can be
implemented.

Descriptions of certain details and embodiments follow,
including a description of the figures, which can depict some
or all of the embodiments described below, as well as discuss-
ing other potential embodiments or implementations of the
technology presented herein.

DETAILED DESCRIPTION

A storage device generates parallel or concurrent write and
erase commands in response to a received write request. The
storage device can write the data in response to the request,
and erase blocks marked for deletion to free storage space for
subsequent write requests. The erase operation does not need
to immediately precede the write operation. The concurrent
erasure of blocks marked for deletion increases the likelihood
that a storage device will have free storage space available
whenever a write request is received.

The storage device receives a write request from a disk
controller or comparable controller device to write data to a
storage array. The storage device determines that one or more
blocks are marked for deletion. In response to receiving the
write request and determining that blocks are marked for
deletion, the storage device issues a write command on a first
media access channel for a first location of the storage array,

US 9,111,598 B2

3

where the first location is either unwritten space or erased
space. The storage device also issues an erase command on a
second media access channel for a different storage location
of'the storage array to erase the block(s) marked for deletion.
Thus, the commands are issued concurrently on different
channels.

It will be understood that “concurrent” commands or par-
allel commands refers to commands that do not require
completion of each other prior to being executed. In tradi-
tional systems where a block is required to be erased prior to
being written, the local controller is required to suspend a
write command until completion of an erase command of the
address space on which the write command will execute. As
described in more detail below, a local controller does not
have to wait for completion of either the write or erase com-
mand prior to executing the other command. It will be under-
stood that a write command refers to a command by a local
controller to commit data to the physical media (a storage
array) of the storage device to which the local controller
belongs. An erase command refers to a command by a local
controller to reset a state of a location (e.g., block or blocks)
of the physical media. For example, an erase command can
include setting all bits of a particular address range to zeros.
The commands are generated within the local controller in
response to a request or command from external to the storage
device by an external controller device (e.g., a disk control-
ler).

Theuse of concurrent commands allows a storage device to
avoid delay in a situation that would otherwise incur delay to
erase a block prior to writing new data to the previously
written blocks. Writing new data to a previously written block
can be referred to as “overwriting” the block, which can
include dual operations of first clearing the block of previous
data, and then writing the new data to it. A common example
of'a storage device that requires erasing prior to overwriting is
a solid state storage device or solid state drive (SSD). A host
system, such as a user computer device, a server device, a
storage server, or other host system, includes a device con-
troller (e.g., a disk controller or comparable controller device
to issue access requests to a storage device). The device
controller sends a write request to the storage device, which
determines if one or more blocks are marked for deletion, and
issues a write command in response to the write request. The
storage device also issues an erase request as a concurrent
command to erase a location already marked for deletion,
which is not a location to which the write command will write
data. Thus, the two command operate on different blocks,
which allows the write command to proceed without having
to wait for completion of the erase command.

FIG. 1is a block diagram of an embodiment of a system in
which a drive issues concurrent write and erase commands in
response to a write request. System 100 includes multiple
clients 110 coupled over network 120 to storage server 130.
Clients 110 can represent user devices and/or processes
executed remotely that request a service of storage server 130.

In system 100, clients 110 access the storage system
including storage server 130 and associated storage devices
over network 120. Network 120 can include any internet-
working technology to remotely access storage. Network 120
can include any combination of private and public network. In
one embodiment, network 120 includes a fibre channel SAN
(storage area network). In one embodiment, network 120
includes an iSCSI (small computer system interface over
internet) network. In an alternative embodiment, clients 110
can be executed as different processes (e.g., different appli-
cations) on a host computer device, which host device can be

10

15

20

25

30

35

40

45

50

55

60

65

4

directly attached directly to storage devices (e.g., a JBOD or
just a bunch of drives implementation).

Storage server 130 represents a device that interfaces via
network 120 to process and requests to a storage subsystem.
The storage subsystem includes multiple storage devices 142.
In one embodiment, storage subsystem includes multiple
SSDs 144. It will be understood that SSDs 144 could be
referred to as storage devices of the storage subsystem. SSDs
144 are separately identified in system 100 as one example of
a storage device that requires erasing previously written
blocks prior to writing new data to the previously written
blocks.

As the storage devices of the storage subsystem are used
longer, the amount of free space decreases until the storage
device eventually performs writes by freeing up storage space
prior to writing. As mentioned above, traditionally the storage
device performs the erasing or freeing up of storage space
immediately prior to performing the write. However, the
erase operation decreases the performance of the storage
device with respect to throughput, or data input/output (1/O)
rates. In contrast, in system 100, SSDs 144 perform write and
erase operations concurrently on separate access channels to
different locations of the physical media in response to a write
request. Thus, a write request results in the desired writing of
data, and can also free up space for a subsequent write.

In one embodiment, storage server 130 includes a driver
that divides data into 512 KB chunks for writing to the storage
subsystem. In one embodiment, SSDs 144 erase 256 KB
blocks as soon as a complete block is marked for deletion, and
will erase 512 KB blocks when available as soon as they are
marked for deletion. In one embodiment, each SSD 144
includes a local controller that determines when blocks are
marked for deletion. Thus, the SSD marks blocks for deletion
as soon as they are ready for deletion. Additionally, the local
controller can issue concurrent commands to cause a write on
one channel of an SSD 144 while issuing an erase on a
different channel of the SSD 144. It will be understood that
such concurrent operation can be performed independently
by the storage devices themselves, without request or com-
mand by an external device controller.

FIG. 2 is a block diagram of another embodiment of a
system in which a drive issues concurrent write and erase
commands in response to a write request. System 200 pro-
vides one example of a system in accordance with system 100
of FIG. 1. While system 200 illustrates user device 210 and
storage server 220, it will be understood that in an alternate
embodiment, a user device 210 can include components nec-
essary to directly connect to storage devices, and implement
the operations described here for storage server 220.

User device 210 includes application (app) 212, which
represents an end-user application (one with a user interface),
or a system-level application that generates a data access
request. A data access request can include a write request.
Application 212 generates a write request to store new data to
the storage devices and/or to modify data already stored on a
storage device. In one embodiment, user device 210 sends a
data access request to storage server 220 for access to storage
device or drive 240. In one embodiment, user device 210
sends the data access request to storage server 220 over a
network connection.

Storage server 220 includes operating system (OS) 230.
OS 230 represents control software to manage the storage
server and its operations. OS 230 includes filesystem 232,
which manage how data is stored in the connected storage
devices. Filesystem 232 can be a block-based filesystem,
which stores and manages data in blocks, which are not
necessarily contiguously stored within storage device 240. In

US 9,111,598 B2

5

one embodiment, storage server 220 includes HBA (host bus
adapter) 222, which allows storage server 220 to interface
with storage device 240. Storage server 220 includes a hard-
ware interface to drive 240, and a driver to operate the hard-
ware interface. HBA 222 can represent the driver used to
interface with storage device 240. HBA 222 can separate a
write operation generated by application 212 into multiple
packets of operations for access to storage device 240. In one
embodiment, HBA provides the packets of data to device
controller 224.

Storage server 220 includes device controller 224, which
represents a disk controller or comparable device. Device
controller 224 is an external controller from the perspective of
storage device 240. Device controller 224 generates data
access requests to storage device 240. Device controller 224
can include driver components and physical interface com-
ponents to send data access requests to storage device 240.
Device controller 224 includes hardware interface compo-
nents to connect to storage device 240, and storage device 240
includes hardware interface components to connect to device
controller 224.

Storage device 240 includes controller 242, which is a local
controller, or control logic local to the storage device. Con-
troller 242 performs operations in response to receiving
requests from device controller 224. More particularly, local
controller 242 issues commands within the storage device to
provide the requested access for application 212. For a write
request, controller 242 issues one or more commands neces-
sary to execute the write operation, as well as issuing a com-
mand to perform an erase operation on and blocks currently
marked for deletion. The one or more commands to execute
the write operation can depend on a state of the storage within
storage device 240. For example, a single command may be
sufficient to execute a write of new data when free space is
available; whereas multiple commands may be required for a
modification of existing data (e.g., read the data, modify the
data, and then write the data).

In one embodiment, storage device 240 includes write
buffer 244, where controller 242 can store data for a write
request. Write buffer 244 can be or include any type of storage
device, register, or buffer used to temporarily cache data.
Thus, data received from device controller 224 in one or more
write requests can be stored in write buffer 244 until stored on
the physical media of storage device 240. Storage array 246
represents the physical media of storage device 240. Typi-
cally the storage space in an SSD is arranged in rows and
columns, and thus is a storage array. Those of skill in the art
are familiar with the structure and accessing of the physical
media, and details will not be provided herein. Storage device
240 includes multiple channels to access storage array 240, as
shown by N channels CHO through CH(N-1). Each of the N
channels is a storage access channel, or a channel over which
local controller 242 can access storage array 240.

In operation, application 212 generates and/or modifies
data. The generation or modification of data triggers filesys-
tem 232 to generate a write request, which it forwards to HBA
222. HBA 222 processes the data associated with the request
into packets of data to transmit to storage device 240. HBA
222 forwards the data packets to device controller 224.
Device controller 224 transports the data to storage device
240. In one embodiment, device controller 224 transports the
data as SCSI write commands. In one embodiment, storage
device 240, via controller 242, breaks down a single write
command received from device controller 224 into multiple
blocks for delivery to the physical media, storage array 246.
The multiple blocks can be, for example, 512 KB byte blocks
delivered to the media.

10

15

20

25

30

35

40

45

50

55

60

65

6

In one embodiment, storage device 240 stores data
arranged in blocks of 4 KB pages. In one embodiment, stor-
age device 240 uses 64 pages per block, making the size ofthe
block 256 KB. In one embodiment, storage device 240 uses
128 pages per block, making the size of the block 512 KB.
Storage device 240 writes the data to storage array 246 using
free pages. The free pages can be pages that are unwritten,
until there are no more unwritten pages, after which storage
device 240 writes the data to erased pages. If data that is
already stored to storage device is later edited, controller 242
first reads the data from storage array 246, modifies the data,
and rewrites the data to a different location of the physical
media. The new location is typically mapped to the same
logical address (e.g., logical block address (LBA)) as the
original location from which the data was read. Controller
242 also generates a concurrent erase of blocks marked for
deletion on a different channel. Thus, the erase is performed
as a separate process asynchronously with respect to the
write. The controller further marks the blocks at the original
location for deletion.

In one embodiment, the number N of data access channels
is two. In such an implementation, a storage device would
issue a write command on one channel, and issue an erase
command on the other channel. In one embodiment, the num-
ber N of data access channels is a multiple of two higher than
two. In such an implementation, in one embodiment, the local
controller can issue pairs of write and erase commands in
parallel on different pairs of data access channels.

FIG. 3 is a flow diagram of an embodiment of a process 300
for accessing a storage device that implements concurrent
write and erase operations. A user, either human or machine,
enters and saves data to a file within an application on a user
device, block 302. The user application transfers the data to
the filesystem of an operating system under which the user
application operates, block 304. The filesystem in turn trans-
fers the data to the operating system, block 306. More par-
ticularly, the operating system includes services and/or pro-
cesses for accessing storage.

The operating system transfers the data to a host bus
adapter (HBA) or comparable host interface, block 308. The
HBA driver places the data in I/O packets for transmission to
a device controller (e.g., disk controller), block 310. The
device controller includes a driver that further processes the
data for storage by the storage device. The device controller
breaks the data packets up into blocks for storage on the
storage device(s), block 312. In one embodiment, the device
controller prepares the data blocks for a RAID implementa-
tion, as appropriate, block 314. The device controller then
sends the data blocks to the storage device(s), block 316.

The storage device(s) receive the data from the device
controller, and internally perform concurrent write and erase
operations in response to receiving the data, block 318. The
internal nature of the concurrent write and erase operations
refers to the fact that the storage device(s) manage the con-
current operations internally, and the concurrent commands
are not managed by the device controller. For example, the
storage device includes an internal controller that can gener-
ate a data write operation on a first channel (e.g., channel A),
and an erase operation on a second channel (e.g., channel B).
The operations are discussed below in more detail with
respect to FIGS. 4A and 4B, respectively.

A local controller of the storage device determines when a
write operation is required, and in response to the need for a
write operation initiates process 402 of FIG. 4A to execute a
concurrent write on a first channel. The local controller also
checks for blocks marked for deletion in response to receiving
a write request, and initiates process 404 of FIG. 4B to

US 9,111,598 B2

7

execute a concurrent erase on a second channel. It will be
understood that the local controller issues the write command
to a first location of the storage media, and issues the erase
command to a second location of the storage media. Thus, the
storage device writes to one location and erases a different
location in parallel.

FIG. 4A is a flow diagram of an embodiment of a process
402 for implementing a write on channel A concurrently with
an erase on channel B as provided in FIG. 4B. In one embodi-
ment, the local controller of the storage device writes the data
to a data buffer, block 412. The local controller determines if
there are adequate free pages on the storage device to fulfill
the write request, block 414. In one embodiment, if there are
not adequate free pages on the storage device for the write,
block 416 NO branch, the local controller performs write
operations in accordance with traditional methods, block 418.
More particularly, the local controller will perform an erase
operation directly preceding a write operation to the same
location. Thus, the local controller will free up storage space
immediately preceding a write operation, and can perform an
erase operation and a write operation on the same channel, or
on separate channels to the same storage location.

If there are adequate free pages on the storage device to
fulfill the write request, block 416 YES branch, the local
controller determines if the write request is for a new data, or
if it is an edit of existing data, block 418. The data edit will
identify the storage location of the data to be modified. If the
write operation is not for a data edit, block 420 NO branch, the
local controller can obtain the address(es) of available blocks,
block 422. The available blocks are blocks that are either
unwritten, or erased and therefore reset to an unwritten state.
The local controller issues a command to write the data to
selected available blocks, block 424. The local controller can
return a command complete signal to the device controller
after completing the write operation, block 426.

If the write operation is for a data edit, block 420 YES
branch, the local controller reads the existing data corre-
sponding to the data to modify from a specified address for the
data to modify, block 428. The local controller modifies the
existing data with the new data, block 430, and writes the
modified data to new page(s) on the storage media, block 432.
The local controller marks the pages that contain the original
data for deletion. The local controller can send a command
complete signal to the device controller after completing the
write operation, block 426.

FIG. 4B is a flow diagram of an embodiment of a process
404 for implementing an erase on channel B concurrently
with a write on channel A as provided in FIG. 4A. In parallel
with the write operation, the local controller (e.g., disk firm-
ware) checks to see if an erase operation can be performed in
parallel. Thus, the local controller determines if there are full
blocks marked for deletion, block 442. In one embodiment,
the local controller will only perform a parallel erase on full
blocks (e.g., 256 KB or 512 KB) that are marked for deletion.
If there are no blocks marked for deletion, block 444 NO
branch, the block deletion process ends, block 454.

If there are blocks marked for deletion, block 444 YES
branch, the local controller issues an erase command to the
block or blocks marked for deletion, block 446. It will be
understood that a block will be marked for deletion from a
previous operation that deleted and/or moved data. A delete
operation marks a block for deletion. A modification of data
includes modifying the data and performing a delete opera-
tion on the original data location.

If'the erase operation does not complete successfully, block
448 NO branch, the local controller can send an error condi-
tion to the device controller, block 450. If the erase operation

10

15

20

25

30

35

40

45

50

55

60

65

8

completes successtully, block 448 YES branch, the local con-
troller can send a command complete signal to the device
controller, block 452. The local controller then terminates the
block deletion operation, block 454.

FIG. 5A illustrates a network storage system in which
concurrent write and erase can be implemented. Storage serv-
ers 510 (storage servers 510A, 510B) each manage multiple
storage units 550 (storage 550A, 550B) that include mass
storage devices. These storage servers provide data storage
services to one or more clients 502 through a network 530.
Network 530 can be, for example, a local area network
(LAN), wide area network (WAN), metropolitan area net-
work (MAN), global area network such as the Internet, a
Fibre Channel fabric, or any combination of such intercon-
nects. Each of clients 502 can be, for example, a conventional
personal computer (PC), server-class computer, workstation,
handheld computing or communication device, or other spe-
cial or general purpose computer.

Storage of data in storage units 550 is managed by storage
servers 510 which receive and respond to various read and
write requests from clients 502, directed to data stored in or to
be stored in storage units 550. Storage units 550 constitute
mass storage devices which can include, for example, flash
memory, magnetic or optical disks, or tape drives, illustrated
as disks 552 (disk 552A, 552B). Storage devices 552 can
further be organized into arrays (not illustrated) implement-
ing a Redundant Array of Inexpensive Disks/Devices (RAID)
scheme, whereby storage servers 510 access storage units 550
using one or more RAID protocols known in the art.

Storage servers 510 can provide file-level service such as
used in a network-attached storage (NAS) environment,
block-level service such as used in a storage area network
(SAN) environment, a service which is capable of providing
both file-level and block-level service, or any other service
capable of providing other data access services. Although
storage servers 510 are each illustrated as single units in FIG.
5A, a storage server can, in other embodiments, constitute a
separate network element or module (an “N-module”) and
disk element or module (a “D-module”). In one embodiment,
the D-module includes storage access components for servic-
ing client requests. In contrast, the N-module includes func-
tionality that enables client access to storage access compo-
nents (e.g., the D-module), and the N-module can include
protocol components, such as Common Internet File System
(CIFS), Network File System (NFS), or an Internet Protocol
(IP) module, for facilitating such connectivity. Details of a
distributed architecture environment involving D-modules
and N-modules are described further below with respect to
FIG. 5B and embodiments of a D-module and an N-module
are described further below with respect to FIG. 7.

In one embodiment, storage servers 510 are referred to as
network storage subsystems. A network storage subsystem
provides networked storage services for a specific application
or purpose, and can be implemented with a collection of
networked resources provided across multiple storage servers
and/or storage units.

In the embodiment of FIG. 5A, one of the storage servers
(e.g., storage server 510A) functions as a primary provider of
data storage services to client 502. Data storage requests from
client 502 are serviced using disks 552A organized as one or
more storage objects. A secondary storage server (e.g., stor-
age server 510B) takes a standby role in a mirror relationship
with the primary storage server, replicating storage objects
from the primary storage server to storage objects organized
on disks of the secondary storage server (e.g., disks 550B). In
operation, the secondary storage server does not service
requests from client 502 until data in the primary storage

US 9,111,598 B2

9

object becomes inaccessible such as in a disaster with the
primary storage server, such event considered a failure at the
primary storage server. Upon a failure at the primary storage
server, requests from client 502 intended for the primary
storage object are serviced using replicated data (i.e. the
secondary storage object) at the secondary storage server.

It will be appreciated that in other embodiments, network
storage system 500 can include more than two storage serv-
ers. In these cases, protection relationships can be operative
between various storage servers in system 500 such that one
ormore primary storage objects from storage server 510 A can
be replicated to a storage server other than storage server
510B (not shown in this figure). Secondary storage objects
can further implement protection relationships with other
storage objects such that the secondary storage objects are
replicated, e.g., to tertiary storage objects, to protect against
failures with secondary storage objects. Accordingly, the
description of a single-tier protection relationship between
primary and secondary storage objects of storage servers 510
should be taken as illustrative only.

In one embodiment, storage devices 550 include respective
local controllers 580 (controller 580A, 580B). The local con-
troller receives a write request and determines if an erase
command can be performed concurrently with a write com-
mand to service the write request. [the erase and write can be
performed concurrently, controller 580 generates a write
command to service or fulfill the write request on one media
access channel, and generates an erase command to erase
blocks marked for deletion on another media access channel.
The write operation and the erase operation are directed to
different locations on the physical media.

FIG. 5B illustrates a distributed or clustered architecture
for a network storage system in which concurrent write and
erase can be implemented in an alternative embodiment. Sys-
tem 520 can include storage servers implemented as nodes
510 (nodes 510A, 510B) which are each configured to pro-
vide access to storage devices 552. In FIG. 5B, nodes 510 are
interconnected by a cluster switching fabric 540, which can
be embodied as an Ethernet switch.

Nodes 510 can be operative as multiple functional compo-
nents that cooperate to provide a distributed architecture of
system 520. To that end, each node 510 can be organized as a
network element or module (N-module 522A, 522B), a disk
element or module (D-module 526 A, 526B), and a manage-
ment element or module (M-host 524A, 524B). In one
embodiment, each module includes a processor and memory
for carrying out respective module operations. For example,
N-module 522 can include functionality that enables node
510 to connect to client 502 via network 530 and can include
protocol components such as a media access layer, Internet
Protocol (IP) layer, Transport Control Protocol (TCP) layer,
User Datagram Protocol (UDP) layer, and other protocols
known in the art.

In contrast, D-module 526 can connect to one or more
storage devices 552 via cluster switching fabric 540 and can
be operative to service access requests on devices 550. In one
embodiment, the D-module 526 includes storage access com-
ponents such as a storage abstraction layer supporting multi-
protocol data access (e.g., Common Internet File System
protocol, the Network File System protocol, and the Hyper-
text Transfer Protocol), a storage layer implementing storage
protocols (e.g., RAID protocol), and a driver layer imple-
menting storage device protocols (e.g., Small Computer Sys-
tems Interface protocol) for carrying out operations in sup-
port of storage access operations. In the embodiment shown
in FIG. 5B, a storage abstraction layer (e.g., file system) of the
D-module divides the physical storage of devices 550 into

10

15

20

25

30

35

40

45

50

55

60

65

10

storage objects. Requests received by node 510 (e.g., via
N-module 522) can thus include storage object identifiers to
indicate a storage object on which to carry out the request.

Also operative in node 510 is M-host 524 which provides
cluster services for node 510 by performing operations in
support of a distributed storage system image, for instance,
across system 520. M-host 524 provides cluster services by
managing a data structure such as a relational database (RDB)
528 (RDB 528A, 528B) which contains information used by
N-module 522 to determine which D-module 526 “owns”
(services) each storage object. The various instances of RDB
528 across respective nodes 510 can be updated regularly by
M-host 524 using conventional protocols operative between
each of the M-hosts (e.g., across network 530) to bring them
into synchronization with each other. A client request
received by N-module 522 can then be routed to the appro-
priate D-module 526 for servicing to provide a distributed
storage system image.

Similar to what is described above, storage devices 550
and/or 552 of system 520 include respective local controllers
580 (controller S80A, 580B). Typically each storage device
includes a separate local controller 580, although controller
580B is shown within storage 550B which includes multiple
disks 552B. The local controller receives a write request and
determines if an erase command can be performed concur-
rently with a write command to service the write request. If
the erase and write can be performed concurrently, controller
580 generates a write command to service or fulfill the write
request on one media access channel, and generates an erase
command to erase blocks marked for deletion on another
media access channel. The write operation and the erase
operation are directed to different locations on the physical
media.

It will be noted that while FIG. 5B shows an equal number
of N- and D-modules constituting a node in the illustrative
system, there can be different number of N- and D-modules
constituting a node in accordance with various embodiments.
For example, there can be a number of N-modules and
D-modules of node 510A that does not reflect a one-to-one
correspondence between the N- and D-modules of node
510B. As such, the description of a node comprising one
N-module and one D-module for each node should be taken
as illustrative only.

FIG. 6 is a block diagram of an illustrative embodiment of
an environment of FIGS. 5A and 5B in which concurrent
write and erase can be implemented. As illustrated, the stor-
age server is embodied as a general or special purpose com-
puter 600 including a processor 602, a memory 610, a net-
work adapter 620, a user console 612 and a storage adapter
640 interconnected by a system bus 650, such as a convention
Peripheral Component Interconnect (PCI) bus.

Memory 610 includes storage locations addressable by
processor 602, network adapter 620 and storage adapter 640
for storing processor-executable instructions and data struc-
tures associated with a multi-tiered cache with a virtual stor-
age appliance. A storage operating system 614, portions of
which are typically resident in memory 610 and executed by
processor 602, functionally organizes the storage server by
invoking operations in support of the storage services pro-
vided by the storage server. It will be apparent to those skilled
in the art that other processing means can be used for execut-
ing instructions and other memory means, including various
computer readable media, can be used for storing program
instructions pertaining to the technology described herein. It
will also be apparent that some or all of the functionality of
the processor 602 and executable software can be imple-

US 9,111,598 B2

11

mented by hardware, such as integrated currents configured
as programmable logic arrays, ASICs, and the like.

Network adapter 620 comprises one or more ports to
couple the storage server to one or more clients over point-
to-point links or a network. Thus, network adapter 620
includes the mechanical, electrical and signaling circuitry
needed to couple the storage server to one or more client over
a network. Each client can communicate with the storage
server over the network by exchanging discrete frames or
packets of data according to pre-defined protocols, such as
TCP/IP.

Storage adapter 640 includes a plurality of ports having
input/output (I/0) interface circuitry to couple the storage
devices (e.g., disks) to bus 650 over an 1/O interconnect
arrangement, such as a conventional high-performance, FC or
SAS (Serial-Attached SCSI (Small Computer System Inter-
face)) link topology. Storage adapter 640 typically includes a
device controller (not illustrated) comprising a processor and
a memory for controlling the overall operation of the storage
units in accordance with read and write commands received
from storage operating system 614. As used herein, data
written by a device controller in response to a write command
is referred to as “write data,” whereas data read by device
controller responsive to a read command is referred to as
“read data”

User console 612 enables an administrator to interface with
the storage server to invoke operations and provide inputs to
the storage server using a command line interface (CLI) or a
graphical user interface (GUI). In one embodiment, user con-
sole 612 is implemented using a monitor and keyboard.

Computing device 600 includes storage adapter 640 to
interface with storage devices that include respective local
controllers (such as controllers 580). The local controller
receives a write request and determines if an erase command
can be performed concurrently with a write command to
service the write request. If the erase and write can be per-
formed concurrently, the local controller generates a write
command to service or fulfill the write request on one media
access channel, and generates an erase command to erase
blocks marked for deletion on another media access channel.
The write operation and the erase operation are directed to
different locations on the physical media.

When implemented as a node of a cluster, such as cluster
520 of FIG. 5B, the storage server further includes a cluster
access adapter 630 (shown in phantom) having one or more
ports to couple the node to other nodes in a cluster. In one
embodiment, Ethernet is used as the clustering protocol and
interconnect media, although it will be apparent to one of skill
in the art that other types of protocols and interconnects can
by utilized within the cluster architecture.

FIG. 7 illustrates an embodiment of the storage operating
system of FIG. 6 for which a concurrent write and erase can be
implemented. The storage operating system can be an
example of storage system 600, and the storage operating
system can be an example of storage operating system 614 of
FIG. 6. The storage operating system includes software layers
executed by a processor, such as processor 602 of FIG. 6, and
organized to form an integrated network protocol stack or,
more generally, a multi-protocol engine 725 that provides
data paths for clients to access information stored on the
storage server using block and file access protocols.

Multi-protocol engine 725 includes a media access layer
712 of network drivers (e.g., gigabit Ethernet drivers) that
interface with network protocol layers, such as the IP layer
714 and its supporting transport mechanisms, the TCP layer
716 and the User Datagram Protocol (UDP) layer 715. The
different instances of access layer 712, IP layer 714, and TCP

25

30

35

40

45

50

12

layer 716 are associated with two different protocol paths or
stacks. A file system protocol layer provides multi-protocol
file access and, to that end, includes support for the Direct
Access File System (DAFS) protocol 718, the NFS protocol
720, the CIFS protocol 722 and the Hypertext Transfer Pro-
tocol (HTTP) protocol 724. A V1 (virtual interface) layer 726
implements the VI architecture to provide direct access trans-
port (DAT) capabilities, such as RDMA, as required by the
DAFS protocol 718. AniSCSI driver layer 728 provides block
protocol access over the TCP/IP network protocol layers,
while a FC driver layer 730 receives and transmits block
access requests and responses to and from the storage server.
In certain cases, a Fibre Channel over Ethernet (FCoE) layer
(not shown) can also be operative in multi-protocol engine
725 to receive and transmit requests and responses to and
from the storage server. The FC and iSCSI drivers provide
respective FC- and iSCSI-specific access control to the blocks
and, thus, manage exports of luns (logical unit numbers) to
either iISCSI or FCP or, alternatively, to both iSCSI and FCP
when accessing blocks on the storage server.

The storage operating system also includes a series of
software layers organized to form a storage server 765 that
provides data paths for accessing information stored on stor-
age devices. Information can include data received from a
client, in addition to data accessed by the storage operating
system in support of storage server operations such as pro-
gram application data or other system data. Preferably, client
data can be organized as one or more logical storage objects
(e.g., volumes) that comprise a collection of storage devices
cooperating to define an overall logical arrangement. In one
embodiment, the logical arrangement can involve logical vol-
ume block number (vbn) spaces, wherein each volume is
associated with a unique vbn.

File system 760 implements a virtualization system of the
storage operating system through the interaction with one or
more virtualization modules (illustrated as a SCSI target
module 735). SCSI target module 735 is generally disposed
between drivers 728, 730 and file system 760 to provide a
translation layer between the block (lun) space and the file
system space, where luns are represented as blocks. In one
embodiment, file system 760 implements a WAFL (write
anywhere file layout) file system having an on-disk format
representation that is block-based using, e.g., 4 kilobyte (KB)
blocks and using a data structure such as index nodes or
indirection nodes (“inodes™) to identify files and file
attributes (such as creation time, access permissions, size and
block location). File system 760 uses files to store metadata
describing the layout of its file system, including an inode file,
which directly or indirectly references (points to) the under-
lying data blocks of a file.

Operationally, a request from a client is forwarded as a
packet over the network and onto the storage server where it
is received at a network adapter. A network driver such as
layer 712 or layer 730 processes the packet and, if appropri-
ate, passes it on to a network protocol and file access layer for
additional processing prior to forwarding to file system 760.
There, file system 760 generates operations to load (retrieve)
the requested data from the disks if it is not resident “in core”,
i.e., in memory 610. If the information is not in memory, file
system 760 accesses the inode file to retrieve alogical vbn and
passes a message structure including the logical vbn to the
RAID system 780. There, the logical vbn is mapped to a disk
identifier and device block number (disk, dbn) and sent to an
appropriate driver of disk driver system 790. The disk driver
accesses the dbn from the specified disk and loads the
requested data block(s) in memory for processing by the

US 9,111,598 B2

13

storage server. Upon completion of the request, the node (and
operating system 700) returns a reply to the client over the
network.

It will be understood that the software “path” through the
storage operating system layers described above can alterna-
tively be implemented in hardware. Thus, any path needed to
perform data storage access for a client request received at the
storage server can be implemented in hardware and/or soft-
ware. A storage access request data path can be implemented
as logic circuitry embodied within a field programmable gate
array (FPGA) or an application specific integrated circuit
(ASIC). Such a hardware embodiment increases the perfor-
mance of the storage service provided by the storage server in
response to a request issued by a client. Moreover, in another
alternate embodiment, the processing elements of adapters
620, 640 can be configured to offload some or all of the packet
processing and storage access operations, respectively, from
processor 602, to increase the performance of the storage
service provided by the storage server. It is expressly contem-
plated that the various processes, architectures and proce-
dures described herein can be implemented in hardware,
firmware, and/or software.

When implemented in a cluster, data access components of
the storage operating system can be embodied as D-module
750 for accessing data stored on disk. In contrast, multi-
protocol engine 725 can be embodied as N-module 710 to
perform protocol termination with respect to a client issuing
incoming access over the network, as well as to redirect the
access requests to any other N-module in the cluster. A cluster
services system 736 can further implement an M-host (e.g.,
M-host 701) to provide cluster services for generating infor-
mation sharing operations to present a distributed file system
image for the cluster. For instance, media access layer 712 can
send and receive information packets between the various
cluster services systems of the nodes to synchronize the rep-
licated databases in each of the nodes.

In addition, a cluster fabric (CF) interface module 740 (CF
interface modules 740A, 740B) can facilitate intra-cluster
communication between N-module 710 and D-module 750
using a CF protocol 770. For instance, D-module 750 can
expose a CF application programming interface (API) to
which N-module 710 (or another D-module not shown) issues
calls. To that end, CF interface module 740 can be organized
as a CF encoder/decoder using local procedure calls (LPCs)
and remote procedure calls (RPCs) to communicate a file
system command between D-modules residing on the same
node and remote nodes, respectively.

In one embodiment, disk drive system 790 includes disk
controller 704, which is shown separately for simplicity in
description. Disk controller 704 interfaces operating system
700 with one or more storage devices. The storage devices
each include a local controller 706. The local controller
receives a write request and determines if an erase command
can be performed concurrently with a write command to
service the write request. If the erase and write can be per-
formed concurrently, controller 706 generates a write com-
mand to service or fulfill the write request on one media
access channel, and generates an erase command to erase
blocks marked for deletion on another media access channel.
The write operation and the erase operation are directed to
different locations on the physical media.

As used herein, the term “storage operating system” gen-
erally refers to the computer-executable code operable on a
computer to perform a storage function that manages data
access and can implement data access semantics of a general
purpose operating system. The storage operating system can
also be implemented as a microkernel, an application pro-

10

15

20

25

30

35

40

45

50

55

60

65

14

gram operating over a general-purpose operating system, or
as a general-purpose operating system with configurable
functionality, which is configured for storage applications as
described herein.

As used herein, instantiation refers to creating an instance
or a copy of a source object or source code. The source code
can be a class, model, or template, and the instance is a copy
that includes at least some overlap of a set of attributes, which
can have different configuration or settings than the source.
Additionally, modification of an instance can occur indepen-
dent of modification of the source.

Flow diagrams as illustrated herein provide examples of
sequences of various process actions. Although shown in a
particular sequence or order, unless otherwise specified, the
order of the actions can be modified. Thus, the illustrated
embodiments should be understood only as an example, and
the process can be performed in a different order, and some
actions can be performed in parallel. Additionally, one or
more actions can be omitted in various embodiments; thus,
not all actions are required in every embodiment. Other pro-
cess flows are possible.

Various operations or functions are described herein,
which can be described or defined as software code, instruc-
tions, configuration, and/or data. The content can be directly
executable (“object” or “executable” form), source code, or
difference code (“delta” or “patch” code). The software con-
tent of the embodiments described herein can be provided via
an article of manufacture with the content stored thereon, or
via a method of operating a communications interface to send
data via the communications interface. A machine readable
medium or computer readable medium can cause a machine
to perform the functions or operations described, and includes
any mechanism that provides (i.e., stores and/or transmits)
information in a form accessible by a machine (e.g., comput-
ing device, electronic system, or other device), such as via
recordable/non-recordable storage media (e.g., read only
memory (ROM), random access memory (RAM), magnetic
disk storage media, optical storage media, flash memory
devices, or other storage media) or via transmission media
(e.g., optical, digital, electrical, acoustic signals or other
propagated signal). A communication interface includes any
mechanism that interfaces to any of a hardwired, wireless,
optical, or other medium to communicate to another device,
such as a memory bus interface, a processor bus interface, an
Internet connection, a disk controller. The communication
interface can be configured by providing configuration
parameters and/or sending signals to prepare the communi-
cation interface to provide a data signal describing the soft-
ware content.

Various components described herein can be a means for
performing the operations or functions described. Each com-
ponent described herein includes software, hardware, or a
combination of these. The components can be implemented
as software modules, hardware modules, special-purpose
hardware (e.g., application specific hardware, application
specific integrated circuits (ASICs), digital signal processors
(DSPs), etc.), embedded controllers, hardwired circuitry, etc.

Besides what is described herein, various modifications
can be made to the disclosed embodiments and implementa-
tions without departing from their scope. Therefore, the illus-
trations and examples herein should be construed in an illus-
trative, and not a restrictive sense.

US 9,111,598 B2

15
What is claimed is:
1. A method comprising:
receiving a first request to write data to a physical medium
of a storage device that requires erasing previously writ-
ten blocks prior to writing new data to the previously
written blocks;
determining that one or more blocks are marked for dele-
tion; and
in response to receiving the first request and determining
that one or more blocks are marked for deletion,
issuing, on a first media access channel, a first write
command to write the data to a first location on the
physical medium; and

issuing, on a second media access channel, a first erase
command for a second location on the physical
medium, wherein the second location is different
from the first location, wherein the first write com-
mand and the first erase command are issued in par-
allel.

2. The method of claim 1, wherein the physical medium
comprises a solid state drive storage device.

3. The method of claim 1 further comprising, in response to
receiving a second request and determining that one or more
additional blocks are marked for deletion, issuing, on a third
media access channel, a second write command to write data
to a third location on the physical medium and issuing, on a
fourth media access channel, a second erase command for a
fourth location on the physical medium.

4. The method of claim 1, wherein the first erase command
is issued in response to receiving the first request and not in
response to an erase command issued by a disk controller that
manages the storage device.

5. The method of claim 1 further comprising:

determining that the data is edited data;
reading original data corresponding to the edited data from
the storage device;
modifying the original data;
wherein the first write command comprises a command to
write the modified data to a location different from the
location of the original data; and
marking the original data for deletion.
6. The method of claim 1 further comprising:
receiving a second request to write data to the physical
medium;
determining that one or more additional blocks are marked
for deletion;
determining that there are insufficient available free blocks
to service the second request;
issuing a second erase command to erase the additional
blocks marked for deletion; and
issuing a second write command to write data to the physi-
cal medium at an address of the additional blocks after
completion of the second erase command.
7. A storage device comprising:
astorage array configured to store data, wherein the storage
array requires erasing previously written blocks prior to
writing new data to the previously written blocks;
a hardware interface to exchange data with a device con-
troller, the hardware interface configured to receive,
from the device controller, a first request to write data to
the storage array; and
a local controller configured to,
determine that one or more blocks are marked for dele-
tion; and

in response to receiving the first request and determining
that one or more blocks are marked for deletion, issue,
on a first media access channel, a first write command

10

15

20

25

30

35

40

45

50

55

60

65

16

to write the data to a first location on the storage array,
and issue, on a second media access channel, a first
erase command for a second location on the storage
array, wherein the second location is different from
the first location, wherein the first write command and
the first erase command are issued in parallel.

8. The storage device of claim 7, wherein the storage array
comprises a solid state storage medium.

9. The storage device of claim 7 further comprising the
local controller being configured to, in response to receiving
a second request and determining that one or more additional
blocks are marked for deletion, issue, on a third media access
channel, a second write command to write data to a third
location on the storage array and issue, on a fourth media
access channel, a second erase command for a fourth location
on the storage array.

10. The storage device of claim 7, wherein the first erase
command is issued in response to receiving the first request
and not in response to an erase command issued by the device
controller.

11. The storage device of claim 7 further comprising the
local controller being configured to:

determine that the data is edited data;

read original data corresponding to the edited data from the

storage device;

modify the original data;

wherein the first write command comprises a command to

write the modified data to a location different from the
location of the original data; and

mark the original data for deletion.

12. The storage device of claim 7 further comprising the
local controller being configured to:

determine that one or more additional blocks are marked

for deletion in response to a second request;

determine that there are insufficient available free blocks to

service the second request;

issue a second erase command to erase the additional

blocks marked for deletion; and

issue a second write command to write data to the storage

array at an address of the additional blocks after comple-
tion of the second erase command.

13. An article of manufacture comprising a computer-read-
able storage medium having program code stored thereon, the
program code to:

receive a first request to write data to a physical medium of

a storage device that requires erasing previously written
blocks prior to writing new data to the previously written
blocks;

determine that one or more blocks are marked for deletion;

and

in response to receiving the first request and determining

that one or more blocks are marked for deletion,

issue, on a first media access channel, a first write com-
mand to write the data to a first location on the physi-
cal medium; and

issue, on a second media access channel, a first erase
command for a second location on the physical
medium, wherein the second location is different
from the first location, wherein the first write com-
mand and the first erase command are issued in par-
allel.

14. The article of manufacture of claim 13, wherein the
physical medium comprises a solid state drive storage device.

15. The article of manufacture of claim 13, wherein the
program code further comprises program code to, in response
to receiving a second request and determining that one or
more additional blocks are marked for deletion, issue, on a

US 9,111,598 B2

17

third media access channel, a second write command to write
data to a third location on the physical medium and issue, on
a fourth media access channel, a second erase command for a
fourth location on the physical medium.

16. The article of manufacture of claim 13, wherein the first
erase command is issued in response to receiving the first
request and not in response to an erase command issued by a
disk controller that manages the storage device.

17. The article of manufacture of claim 13, wherein the
program code further comprises program code to:

determine that the data is edited data;

read original data corresponding to the edited data from the

storage device;

modify the original data;

wherein the first write command comprises a command to

write the modified data to a location different from the
location of the original data; and

mark the original data for deletion.

18. The article of manufacture of claim 13, wherein the
program code further comprises program code to:

receive a second request to write data to the physical

medium;

determine that one or more additional blocks are marked

for deletion;

determine that there are insufficient available free blocks to

service the second request;

issue a second erase command to erase the additional

blocks marked for deletion; and

issue a second write command to write data to the physical

medium at an address of the additional blocks after
completion of the second erase command.

#* #* #* #* #*

10

15

20

25

30

18

